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Spin-lattice relaxation times for ruby of very low Cr

concentration at low temperature are computed for the one-

/// phonon Kronig-Van Vleck process, using the spin-léttice

Hamiltonian proposed by Mattuck and Strandberg and taking

the vibrational anlsotropy of the crystal into account. The
relaxation times are computed as functilons of the angle
between the applied magnetic field and the c-axis, temperature,

and frequency. Reasonably good agreement with experimentally

determined relaxation times 1is obtained. ;;;
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I. INTRODUCTION

In electron spin-lattice relaxation at low temperature
the dominant process should be the one-phonon process proposed
by Kronigl and by Van Vleckz, which takes place through the
combined effects of orbit-lattice coupling and spin-orbit
coupling. The interaction leading to this one-phonon process
has been described by Mattuck and Strandber'g3 and by Or'bachLl
In terms of a spin-lattice Hamiltonian to be added as a pertur-
bation to the usual spin Hamiltonian for the paramagnetic 1ion,
Recent experimental investigations on ultrasonic spin-resonance

5-7

absorption and on the effect of uniaxial stress on ESR

spectra8’9

have determined the constants in this spin-lattice
Hamiltonian for several iron-group ions in various crystal
lattices.

As a result, the phonon-induced spin-transition proba-
bilities for the one-phonon process can be computed and used
to compute the spin-lattice relaxation times due to this
process. This paper presents such a computation for the case
of ruby (A1203:Cr3+), assuming such a small Cr concentration
that interactions between neighboring Cr ilons may be neglected.
Ruby was chosen for thils computation because of its many im-
applications and also because the results are more

interesting for this four-level system with zero-field split-

ting than for, say, the case of a simple Kramers doublet.




3.
Relaxation in such a system 1s In general characterized by
three relaxation times, and, because of the zero-field
splitting, these relaxation times depend strongly upon the
angle between the applled magnetic field and the trigonal
axis of the ruby.

Spin-lattice relaxation times In ruby have been exten-
sively investigated, but most measurements have been carried
out with samples of such high chromium concentration that
exchange interactions and cross relaxation are important, re-
sulting in strongly concentration-dependent relaxation times
mueh shorter than those computed here. Measurements on samples
of very low chromium concentration (~0.01%) are, however, in
fair agreement with the results presented here, indicating
that for such sémples the Kronig-Van Vleck one-phonon process

is dominant.

II. SPIN-LATTICE HAMILTONIAN
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It was proposed by Mattuck and Strandberg and by Orbach9

to treat spin-lattice interactions for iron-group ions by
means of a spin-lattice Hamiltonlan which couples the paramag-
netic 1lon to the lattice. This spin-lattice Hamiltonian 1s
quadratic in spin operators and, to first order, linear i1n

lattice strain, having the following general form

R = 2. Dij S“-SJ' (1)

vy




The tensor D 1s related to strain linearly as follows:

D, = zf,s,h,x GCJ‘kL SIVY 2)
The tensor G has many of the symmetry propertiles of the
elastic stiffness tensor, limliting, therefore, the number of
Independent components. Furthermore, since D can be chosen
to be traceless an added limitation 1is placed upon the number
of independent components of G.

Although the maximum point-group symmetry of the
A1203 lattice 1is D3d’ that at each chromium site is only C3.
Thus, there are two non-equivalent sets of chromium sites,
each of which can be transformed into the other by means of

a two fold rotation of the group D3d' As a result, there are

two different G tensors each of the form (in Voigt notation):

G,y G, -(}33/,2 Gl4 -G G16
Gp G, -G33/2 -qu G25 -G,
—(G11+G12) —(G11+G12) G33 0 G25 0
)1 "G 0 Gy %45 %2
-Cgyp G52 0 -G45 G44 Gq
YG16 Cle 0 Gpe Gy 2(G11-Gp)
For the two different sites the components Gll’ G12’ G33, G44’

Glb’ and G41 are respectively equal, whereas the components




G25, G52, Gl6’ and G45 are equal respectively in magnitude
but of opposite sign. The values obtained by Hemphill and
10

Donoho are given below:

Gll = 124.6 Ge G41 = -15.0 G¢
G12 = - 35,8 Ge G25 = 45,0 Gc
G = 181.2 Ge G = 45,0 Ge
33 52 .
Guu = 54,0 Gc¢ G16 = 0

G14 = - 15,0 Ge G45 = 0

In the following computation it is assumed that both sites

are equally populated.

ITI. PHONON-INDUCED STRAIN

In order to obtaln a reasonably accurate approximation
to the phonon-induced lattice strain only frequencies for
which the phonon wave length is long compared to interatomic
spacing will be considered. Thus it may be assumed that all
atoms in a unit cell undergo dlsplacements of equal amplitude.
The displacement for phonons of wave vector k,and polariza-

tion vector eP can therefore be wr*itten11

Va, t vk X
W () =bAmw) (0 ~0_ ) €, € (4)




where M 1s the crystal mass, W 1is the phonon angular
frequency, and the phonon operators a and at have the follow-

ing properties:

(Lfk,‘:\nk,9> = [(nkr+1)¥\w]'hl'nkm+\> - (5)

D
0“\?‘“‘8\’) = nk)?)f\w)l My -1 (6)

The strain due to this displacement 1s then obtained from the

usual classical definition

ou, :
L.o= L — au.) 7

Thus, the phonon strain can be written:

VaoT C,k:hc-
ey = (h/8MW) " (00 o= Oy N Epi k; +6, kD) € (8)

In the calculation of spin-lattice transition probabili-
tles the density of phonon states is required. For phonons
with wave vector within solid angle dSL , this density is

given by the following expression:

VIR N2 o.F AN
oy VW LD AT A,




where V is the crystal volume and N;"P is the phonon phase
velocity, which depends upon both the direction of k. and gw .
Finally, it is assumed that the average phonon occupation

number is given by the Bose-E¥nstein formula:

— Aw/eT -4
A, = (e h) (10)

IV, SPIN-LATTICE TRANSITION PROBABILITY

The transition probability per unit time for a tran-
sition in which the ion goes from state i1 to state j and a
phonon mode of frequency bo:(&L—Ej)/K goes from occupation
number n to n + 1 1s obtained in the usual way from time-
dependent perturbation theory. Because of the vibrational
anisotropy of the crystal the transition probability must be
computed as a sum over all phonon polarizations and an integral

over all directions of the phonon wave vector:

W = WS — gZ.‘\Z_ S pket €pr KO A0
4 31“\.9& (c&w/k‘l’;l) 4 K15t N"’_;??- (11)

This expression must be computed numerically using a high

Speed computer. For each direction oflg\the Christoffel.




8.
equations must be solved for the phonon velocities and polari-
zations. In this computation the elastic constants obtained
by Wachtman et al.12 were used.

For each direction of the applied magnetic field with
respect to the trigonal axis the matrix elements of the
quadratic spin operators must also be computed. A simplified

spin Hamliltonian of the form

b= gp s 0 US-0) (12)

was employed with isotropic g = 1.980 and D = -5.733 Gc. It
is known from ultrasonic spin-resonance absorption measure-
ments6’7 that the computed matrix elements of quadratic spin
operators between eigenstates of (12) are substantially correct.

Transition probabilities have been computed for all six
transitions for many different values of frequency and for
different angles between the applied fleld and the trigonal
axis, but they are not presented here. Rather they are used
to calculate relaxation times, which are more accessible to
measurement, and, therefore, more interesting. The transition
probabilities themselves could be employed to predict such
things as population inversion in maser applications, although
they are only useful for crystals of very low chromium

concentration.




V., SPIN-LATTICE RELAXATION TIMES

The transition probabilities for the six pairs of levels
in the four-level Cr3+ lon are used to solve the rate
equatlons which govern the dynamical behavior of the spin
system. If the population of level j is denoted by nj,

these equations take the form

V.\I = J%;‘ (ch Y\J —V\IU Y\L) Et')1:314 (13)
Such a set of equations will, in general, yield three inde-
pendent relaxatlon times, and the approach of the system to
equilibrium after, say saturation of a pair of levels will
generally depend upon all three relaxation times.

For the results presented here it is assumed that a pair
of levels is initially saturated and that the recovery of
these levels to equllibrium is observed after removal of the
saturating signal. Thus, the normalized population difference
willl have the form:

.-'t./‘r‘ A e‘T/T\_ ’ ‘t/Tl
o= it = [ HAL s e AC (14)

where n and n_ are the instantaneous populations of levels 1
1
and J respectively, and Nys and njo are their respective

equilibrium values. The guantity S 1s then proportional to the




10.
signal observed 1n a typlcal recovery-after-saturation
measurement. Of course, the levels iInvolved in the recovery-
after-saturation observation may be different from the
saturated levels, but for simplicity the results presented
here concern saturation and recovery of the same pair of levels.

Since the energy eigenvalues of the spin Hamiltonian (12)
and its eigenfunctions depend strongly upon the angle @ between
the trigonal axis and the applied magnetic field the guadratic
spin matrix elements depend strongly upon this angle, with a
resultant angular dependence of the relaxation times. For
reference figure 1 shows the energy levels of ruby and the
nomenclature used here for referring to the levels.

The relaxation times Tl’ T2, and T3 and the amplitudes

A A

1’ 2:
through 5 for the 1-2, 2-3, and 3-4 transitions at a frequency

and A3 of equation (14) are illustrated in figures 2

of 9.3 Gec as functions of @9,

It is seen that in most cases one relaxation time,
usually the longest, dominates the behavior; when two relaxa-
tion times are important they are usually nearly equal. As
a result it may be difficult experimentally to observe the
mixture of different relaxation times in the recovery of a
signal after saturation. If a transition of higher frequency,
however, is saturated, say the 1-3 transition, and the re-
covery of a transition of lower frequency is observed, say
the 2-3 transition, the shorter relaxation times become more

important in general.
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It is easy to explain the strong angular dependence of
the relaxation times of, say, the 1-2 transition, illustrated
In figure 2. At angles near zero the magnetic field is
large (~07.5 kG); State 1 is largely ms = 3/2, and state 2
is largely m = 1/2. The matrix elements of quadratic spin
operators are large between these states, resulting in a
large transition probability. At angles near 90°, however,
the fiecld is small (~1.5 kG); State 1 is largely mg = 1/2
and state 2 is largely m = -1/2, yielding very small matrix
elements and, hence, small transition probability.

The frequency dependence of the relaxation times is
interesting largely because it exhibits no definite behavior.
Figures 6 through 9 illustrate the frequency dependence over
the range 1-10 Gc for the 1-2, 2-3, and 3-4 transitions.
These results are 1n agreement with those of several authors
obtained over a frequency range 3 Gec - 34 Gc13'16 in which no
strong frequency dependence is observed. It should be noted,
however, that for a four-level Kramers system with no zero-
field splitting the frequency dependence should be (f)-2,
whereas an lsolated Kramers doublet would exhibit a dependence
(r)™".

The temperature dependence of the relaxation times is
not very interesting, being governed almost entirely by the
Bose-Einstein factor in the transition probability. Thus,

since no allowance has been made in the computation for such




12.
effects as a phonon bottleneck the relaxation times almost
always approach a constant value as temperature approaches
zero, The case of the 3-4 transition is, however, different
since 1t resembles the sgsituation envisioned for rare-earth

ions by Orbach17

in which a ground-state doublet 1is separated
from an exclted state by an energy less than kT. In this
case the direct transition probabllity W34 is very small

compared to W W,_, and We3 so that the relaxation

14 Y27 Y13

rate for levels 3 and 4 1is governed almost entirely by the
populations of levels 1 and 2, which decrease exponentially
with temperature. This situation 1s 1llustrated in figure 10,
in which one relaxatlion time, that dominating the behavior

of the 3-4 transition, increases almost exponentlally with
decreasing temperature while the others are constant.

The quantitatilve agreement between the computed relaxation
times and experimentally measured values 1s quite good, but
only if measurements on samples containing much above 0.01% Cr
are excluded. A comparison is presented between experimental
and computed values in table I. Detailed measurements on
ruby containing 0.005% Cr are in progress in this laboratory,
but have not yielded usable results as yet.

In conclusion it appears that the Kronig-Van Vleck
mechanism adequately explains spin-lattice relaxation in ruby
of sufficiently low Cr concentration, The results obtained

here exhibit interesting features which are 1n reasonable




13.
agreement with experimental results, but which have not yet

been verified in detail.
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TABLE I

Comparison of Calculated and Experimental Relaxation Times in Ruby

Transition e Freq. TR(calc.) TR(exp.)
Ge. Sec. Sec,
° 15
23 54 9.3 .226 .200
23 80° 7.2 .539 .50013
12 60° 2.9 .750 .5001 %

13 90° 34.6 .080 .05416
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FIGURE CAPTIONS

Energy levels in ruby; 6 = 50°

Relaxation times and amplitudes for 1-2 trans.;
f = 9.3 Ge, T = 4.2°K

Relaxatlion times and amplitudes for 2-3 (high
field) transition; f = 9.3 Ge, T = 4.2°K
Relaxation times and amplitudes for 2-3 (low
field) transition; f = 9.3 Ge, T = 4.2°K
Relaxation times and amplitudes for 3-4 tran-
sition; f = 9.3 Ge, T = 4.2°K

Frequency dependence of relaxation times for
1-2 transition; @ = 60°, T = 4.2°K

Frequency dependence of relaxation times for
2-3 (high field) transition; © = 20°, T = 4.2°K
Frequency dependence of relaxation times for
2-3 (low field) transition; 6 = 20°, T = 4.2°K
Frequency dependence of relaxation times for
3-4 transition; © = 20°, T = 4.2°K

Temperature dependence of relaxation times;

® = 35°, B = 0.415 kG
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